

Comparative study of STR loci for typing old skeletal remains with modified protocols of AmpFISTR Identifiler and AmpFISTR MiniFiler STR Kits

Mian Sahib Zar^{a*}, Ahmad Ali Shahid^a, Muhammad Saqib Shahzad^a, Kyoung-Jin Shin^b, Hwan Young Lee^b, Muhammad Israr^c and Tayyab Husnain^a

^aCentre of Excellence in Molecular Biology, CEMB, University of the Punjab Lahore, Lahore, Pakistan; ^bDepartment of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea; ^cDepartment of Forensic Sciences, University of Health Sciences, Lahore, Pakistan

(Received 19 December 2013; accepted 7 May 2014)

This study highlights a comparative study of short tandem repeat (STR) loci with modified protocols of AmpFlSTR Identifiler and AmpFlSTR MiniFiler STR Kits for typing 27 old skeletal remains collected from 100–1000-year-old mass graves in Pakistan. DNA profiles were obtained from minute quantities of DNA (even from ≤ 10 pg/µL) with modified protocols of these kits, which is a significant achievement in this study. Consensus profiles were produced for each bone sample. A comparison was carried out between Identifiler and Minifiler successfully genotyped STR loci. Full concordance was perceived in 97.33% (146/150) of the compared STR loci, while discordant STR loci were 2.67% (4/150) of the total successfully genotyped STR loci due to either or both allele drop-out or drop-in. Finally, it was observed that the AmpFlSTR MiniFiler kit promoted the recovery of locus/alleles that failed to type with the AmpFlSTR Identifiler kit and more informative DNA profiles were obtained from old skeletal remains with the AmpFlSTR MiniFiler STR kit.

Keywords: DNA typing; old skeletal remains; AmpFlSTR Identifiler STR kit; MiniFiler STR Kit; concordant STR loci; discordant STR loci

Introduction

STR markers are consistently used in case studies for human identification and paternity testing ^{1,2}. Genotyping with STR loci produces results quickly and with high discriminatory power, yet there is a need to extend this technique to obtain the most informative DNA profiles from highly degraded DNA samples³. The amplicon size of the STR markers that are used for DNA profiling usually ranges between 100–450 base pairs⁴. Due to DNA degradation, the longer fragments often cannot be amplified, resulting in partial DNA profiles with lower discrimination power. The autosomal STR multiplex, Identifiler kit, amplifies 15 STR loci and the amelogenin locus in one reaction and has been extensively used within forensic case studies⁵. However, during the analysis of highly degraded DNA, the larger loci in the AmpFISTR Identifiler kit show allelic/locus drop-out; Therefore, to increase the success rate in analysing highly degraded DNA, the MiniFiler kit is used to overcome the problem of allelic/locus drop-out^{6,7,8}.

The MiniFiler STR kit (ABI) has the ability to interpret genotypes from the eight largest loci (D13S317, D7S820, D2S1338, D21S11, D16S539, D18S51, CSF1PO, and FGA) as well as Amelogenin present within the AmpFISTR Identifiler PCR amplification kit. The AmpFISTR MiniFiler kit endorses the recovery of alleles that failed to type with the AmpFISTR Identifiler kit and shows a reduction in stochastic effects due to an overall decrease in amplicon size as MiniFiler alleles range from 70 bp to 283 bp in length⁹. The aim of this study was to compare AmpFISTR IdentiFiler and AmpFISTR MiniFiler STR loci for typing highly Degraded DNA, in order to get more informative DNA profiles from old bone samples. The concordant and discordant STR loci between AmpFISTR MiniFiler and AmpFISTR Identifiler STR kits were examined and proved that AmpFISTR MiniFiler kits promoted the recovery of locus/alleles that failed to type with the AmpFISTR IdentiFiler STR kit.

Materials and methods

Collection of bone samples

In this study, 27 different kinds of human bones (degraded DNA samples) ranging in age from 100 to 1000 years old, collected from old mass graves in Khyber Pakhtunkhwa province of Pakistan, were analysed for comparative study of IdentiFiler and MiniFiler STR loci. Approval for sample collection was obtained from the ethical review committee of the Centre of Excellence in Molecular Biology, University of the Punjab Lahore Pakistan. The samples were photo-documented, labelled and kept at – 20°C until use.

Sample cleaning, pre-treatment and maceration

Sample cleaning, pre-treatment and maceration were carried out in the Forensic Research Laboratory of the Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan. The outer surface of these samples was scraped with a motor drill and a dental bur to remove the latent contamination. Each bone sample was fragmented into small pieces using a dental diamond disc and exposed to ultraviolet (UV) light for 30 min. The bone fragments were treated with a scalpel, surgical blades, a Dremel tool, 10% bleach, ddH₂O and 95% ethanol to remove contamination and were placed in a sterilised fume hood overnight. The samples were macerated into fine powder using liquid nitrogen and a SPEX 6750 Freezer / Mill (SPEX CertiPrep, Metuchen, NJ). The bone powder were transferred to 15 mL falcon tube and kept at – 20°C until DNA extraction.

DNA extraction

The extraction of DNA was conducted with a modified silica-column-based complete demineralization extraction method according to the reported protocol of Zar *et al.*¹⁰. 0.5 g bone powder of each sample was added to a 50 mL falcon tube and 15 mL of extraction buffer (0.5 M EDTA and 0.5% SDS) plus 150 μ L of 20 mg/mL Proteinase K was poured into each tube to dissolve the bone powder. Tubes were mixed well and incubated at 56°C for almost 48 h. After first incubation, an additional 150 μ L of 20 mg/mL Proteinase K was poured into each tube and incubated at 56°C for 1 h. 7.5 mL of the supernatant was taken from each tube and added to another 50 mL falcon tube.

38 mL of PB buffer (QIAquick PCR purification kit, Qiagen) was added and mixed well. Each tube was centrifuged at 3200×g for 5 min. The mixture of each sample was passed through a QIAamp Blood Maxi column (Qiagen) using QIAvac 24 Plus connecting system (Qiagen). Maxi columns were cleaned by pouring 15 mL PE buffer (QIAquick PCR purification kit, Qiagen) into each column. Each column was placed in a 50 mL collection tube. The tubes were centrifuged at 3200×g for 5-6 min to eradicate the remaining PE buffer. Collection tubes were discarded and each QIAamp Maxi column was kept in a new 50 mL falcon tube. 1 mL of nuclease-free double distilled water (ddH₂O) was added to each OIAamp Blood Maxi column (Oiagen), which after the cap was closed was kept for 5 min at room temperature. Columns in tubes were centrifuged at 3200×g for 5 min. This step was repeated to attain 2 mL of eluted DNA of each sample. 10 mL of the PB buffer was added to each tube containing eluted DNA and mixed well. The mixture of each sample was passed through the QIAamp Mini spin columns (Qiagen) using a QIAvac 24 Plus connecting system (Qiagen). Mini columns were cleaned by pouring 750 µL of PE buffer (QIAquick PCR purification kit, Qiagen) into each column. Each column was placed in a 2 mL collection tube. The tubes were centrifuged at 14,000 rpm for 3 min. Collection tubes were discarded and each OIAamp Mini column was placed in a 1.5 mL Eppendorf tube. 100 μL of nuclease-free double distilled water (ddH2O) was added to each QIAamp Mini column and incubated for 5 min at room temperature. Each column was centrifuged at 8000 rpm for 1 min. The OIAamp Mini columns were discarded and eluted DNA was stored at -20°C until use. All extractions were accompanied by negative controls.

DNA quantitation

Concentration of DNA was determined by Real Time PCR with Quantifiler Human DUO DNA Quantification kit¹¹ and the ABI Prism 7500 Sequence Detection System (SDS) as per the recommendations in the Quantifiler User's Manual.

PCR amplification

Amplification of DNA (<100–200 pg/ μ L) was performed twice with both Identifiler and MiniFiler PCR amplification STR kits. Identifiler PCR amplification conditions were as follows: initial incubation at 95°C for 11 min, denaturation at 94°C for 1 min, annealing at 59°C for 1 min, extension at 72°C for 1 min and a final extension at 60°C for 60 min with a final hold at 4°C. The number of PCR cycles was kept at 33 instead of the standard 28 during all experiments. Amplification conditions were conducted with reduced volume reaction mixtures containing 2.0 μ L of Primer Mix, 1.7 μ L dH₂O, 0.5 μ L AmpliTaq Gold DNA Polymerase (5.0 U/ μ L), 3.8 μ L of PCR Reaction Mix and 2 μ L of template DNA in a final reaction volume of 10 μ L.

AmpFISTR MiniFiler PCR amplification was conducted under the following conditions: 95°C for 11 min, 94°C for 20 s, 59°C for 2 min, 72°C for 1 min and a final extension at 60°C for 45 min. The number of PCR cycles was kept at 33 instead of the standard 30 during all experiments. Amplification conditions were carried out with reduced volume reaction mixtures consisting of 1.7 μ L H₂O, 2.0 μ L of primer mix, 4.0 μ L of PCR mix, 0.3 μ L (5 U/ μ L) of AmpliTaq Gold DNA Polymerase and 2.0 μ L of low template DNA (<100–200 pg/ μ L) in a final reaction volume of 10 μ L.

Capillary electrophoresis and data analysis

Experiments were run on an ABI Prism 3130 Genetic Analyzer. The injection time and electrokinetic voltage were the same for both Identifiler and MiniFiler PCR products. $1.0~\mu L$ of amplified product was combined with $10.0~\mu L$ of Hi-Di formamide and $0.2~\mu L$ of LIZ GeneScan 500 size standard. The samples were loaded into a 96-well plate, denatured for 5 min at 95 °C and snap cooled for 3 min before running on a genetic analyser. The data were analysed with GeneMapper ID software (Version 3.2). The minimum analysis threshold for scoring allelic peak height was 100 RFU (Relative Fluorescent Unit). Consensus DNA profiles (collecting common alleles from two replicate reactions of each sample) were produced for each bone sample. DNA profiles of all members of the laboratory staff were also produced with AmpFISTR IdentiFiler and AmpFISTR MiniFiler STR kits, in order to exclude the chances of any possibility of internal contamination, by comparing the staff DNA profiles against the results obtained from the bones.

Results and discussion

Construction of consensus DNA profiles

In the current study, a modified silica-column-based complete demineralization extraction method was used for DNA extraction. It might be due to the fact that complete demineralization followed by silica binding is highly successful for the extraction and recovery of DNA profiles from degraded old skeletal remains¹². The quantity of DNA was $\leq 100-200 \,\mathrm{pg}$ /µL from 0.5 g bone powder of each old skeletal remains; therefore, an increased number of PCR cycles was used for the amplification of low-template DNA using both AmpFISTR IdentiFiler and AmpFISTR MiniFiler STR kits. The quantity of PCR product was increased with an extended number of PCR cycles, but stochastic effects also appeared; therefore, rules of low-template DNA interpretations (consensus approach) were applied for the analysis of low template DNA^{13,14}. In this study two replicates were produced independently for each of the old bone samples using both AmpFlSTR IdentiFiler and AmpFlSTR MiniFiler STR kits. Consensus profiles were made from two replicates of each bone sample as shown in Tables 1 and 2. All PCR amplification reactions were accompanied by negative controls. The negative controls showed no allele or locus drop-in (Figures 1 and 2) confirming the authenticity of the results, and there was no indication of staff contamination when comparing the staff's DNA profiles against the results obtained from the bones.

Concordance and non-concordance between AmpFlSTR Identifiler and AmpFlSTR MiniFiler successfully genotyped STR Loci

The most significant challenge to interpretation in DNA profiling of highly degraded DNA samples arises when either or both allele drop-in and drop-out create discordances^{15,16}. The AmpFlSTR IdentiFiler STR kit simultaneously amplifies 15 autosomal STR loci (D8S1179, D21S11, D7820, CSF1PO, D3S1358, THO1, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818, FGA) and a sex determining marker (amelogenin), while the AmpFlSTR MiniFiler PCR amplification kit (ABI) simultaneously amplifies eight mini-STR loci D13S317, D7S820, D2S1338, D21S11, D16S539, D18S51, CSF1PO, FGA and the sex determining amelogenin loci, shared with the AmpFlSTR IdentiFiler STR kit, but with shorter amplicons. In this study,

Table 1. Consensus profiles produced with AmpFISTR Identifiler STR kit.

Sample Loci ID Repl	icates	D8S1179 D21S11) D21S11	D7820	CSF1PO) D3S1358	THO1 D13S317 D16S539 D2S1338 D19S433	7 D16S539) D2S1338	D19S433	vWA	TPOX	TPOX D18S51 AMEL D5S818 FGA	AMEL	D5S818	FGA
DFL 1	Replication 13, 14 # 1	13, 14	29, 32.2	8	10,12	15	6, 9.3 8, 9	12, 13	18	14, 16.2	16, 18	9, 11	13, 21	×	10, 12	20, 24
	Replication 13, 14 # 2	13, 14	29, 32.2	~	10,12	15	6, 9.3 8, 9	12, 13	18	14, 16.2	16, 18	9, 11	13, 21	×	10, 12	20, 24
	Consensus 13, 14 Profile	13, 14	29, 32.2	∞	10, 12	15	6, 9.3 8, 9	12, 13	18	14, 16.2	16, 18	9, 11	13, 21	×	10, 12	20, 24
DFL 2	Replication 13	13	28	11, 12, 15 12	12	15, 16, 17	6 11, 12	9, 11	19, 20	13	14.2	ı	14, 16	Х, Ү	ı	21
	Replication 13 # 2	13	28	11	10, 12	15, 16	- 11, 12	9, 11	20	13, 16, 15	14.2	ı	16	Х, Ү	11, 12	21
	sensus	13	28	11	12	15, 16	- 11, 12	9, 11	20	13	14.2	ı	16	Х, Ү	1	21
DFL 3	Replication # 1	I	33.2	11	10, 12	15, 16	9.3 11, 13	11, 12	19, 20	13	17	∞	16	×	12, 13	21, 24
	Replication 13	13	33.2	9, 11	10, 12	15, 16	8, 9.3 11, 12	11,12	19, 20	13	17	∞	16	×	12, 13	21
	Consensus Profile	ı	33.2	11	10, 12	15, 16	9.3 11	11, 12	19, 20	13	17	∞	16	×	12, 13	21
DFL 4	Replication 13	13	30	ı	ı	14, 15	1	11, 12	1	13.2, 15.2	11	1	ı	×	ı	23
	Replication # 2	ı	29, 30	ī	1	13, 14, 15	1	11	ı	13.2, 15.2	1	7, 8	i	×	11	23
	Consensus Profile	ı	30		1	14, 15	1	11	ı	13.2, 15.2	1	1	1	×	ı	23

(Continued)

Downloaded by [University of the Punjab] at 10:43 29 June 2014

Continued	
able 1. (

Sample Loci ID Repl	Loci Replicates D8S1179 D21S11	D8S1179	9 D21S11	D7820	CSF1PO) D3S1358	TH01	D13S317	THO1 D13S317 D16S539 D2S1338 D19S433	D2S1338	D19S433	vWA	TPOX	TPOX D18S51 AMEL D5S818 FGA	AMEL	D5S818	FGA
DFL 5	Replication 14, 15	14, 15	26, 30	12	10, 11	15, 17	9.3	8, 11, 12, 11, 13		20, 24	14, 15	18, 19	8, 9	15, 17	Х, Ү	11	22, 24
	Replication 14, 15	14, 15	26, 30	12	10, 11	15, 17	9.3	8, 12, 13	11, 13	20, 24	14, 15	18, 19	8, 9	14, 15,	Х, Ү	11	22, 24
	Consensus Profile	14, 15	26, 30	12	10, 11	15, 17	9.3	8, 12	11, 13	20, 24	14, 15	18, 19	8, 9	17	Х, Ү	11	22, 24
DFL 6	DFL 6 Replication 10, 15	10, 15	30.2, 31.2 11	11	10, 13	16, 17	6,9	8, 12	11, 12	20, 23	13, 15.2	16, 18	8, 9	13, 17	×	9, 11	19, 21
	Replication 10, 15	10, 15	30.2, 31.2 11	11	10, 13	16, 17	6,9	8, 12	11, 12	20, 23	13, 15.2	16, 18	8, 9	13, 17	×	9, 11	19, 21
	Consensus Profile	10, 15	30.2, 31.2	11	10, 13	16, 17	6,9	8, 12	11, 12	20, 23	13, 15.2	16, 18	8, 9	13, 17	×	9, 11	19, 21
DFL 7	Replication 14	41	30, 32.2	8, 11	12	15, 17	8, 9	∞	11	23, 25	13, 14	16, 18	8, 11	13, 17	Х, Ү	12, 13	21, 22
	Replication 14	14	30, 30.2,	8, 11	12	15, 17	8, 9	∞	11	23, 25	13, 14	16, 18	8, 11	17	Х, Ү	9, 12, 13	20, 21,
	Consensus Profile	14	30, 32.2	8, 11	12	15, 17	8, 9	&	Ξ	23, 25	13, 14	16, 18	8, 11	17	Х, Ү	12, 13	21, 22
DFL 8	Replication 10, 14	10, 14	30, 31.2	10	11, 12	14, 18	8,9	8, 11	8, 11	18, 22	14, 15.2	16, 18	8, 10	17, 19	Х, Ү	10, 11	20, 24
	Replication 10, 14	10, 14	30, 31.2	10	11, 12	14, 18	8,9	8, 11	8, 9, 11	18, 22	14, 15.2	16, 18	8, 10	17, 19	Х, Ү	10, 11	20, 24
	Consensus 10, 14 Profile	10, 14	30, 31.2	10	11, 12	14, 18	8,9	8, 11	8, 11	18, 22	14, 15.2	16, 18	8, 10	17, 19	Х, Ү	10, 11	20, 24
DFL 9	Replication 15 # 1	15	1	ı	12	16	1	1	1	1	16	17	ı	15	×	12	1

	, 25 , 25	, 26 , 26	, 23 , 23	, 24 , 24 , 24
1 1	3 20, 2 20, 2 20,	3 23, 2, 23, 3 23,	3 19, 3 19, 3 19,	3 19, 3 19, 3 19,
Ξ .	11, 13	12, 13 11, 12, 13 12, 13	10, 13	12, 13 12, 13 12, 13
××	X, Y, X, X, X, Y, X, Y,	X, Y, X, X, X, Y,	X, X, X, X, X, Y, X, Y,	× × ×
15	11 13, 14 11, 12 13, 14 11 13, 14	14, 17 14, 15, 17 14, 17	13, 15 13, 15 13, 15	14, 15 14, 15 14, 15
1 1	11, 12	8, 12 8, 12 8, 12	∞ ∞ ∞	= = =
17	14, 16, 14, 16, 18, 16, 16, 16	17 16, 17 17	15, 16 15, 16 15, 16	14, 19 14, 18, 19 14, 19
14.2, 15.2	13, 16.2 13, 16.2 13, 16.2	13, 15 13, 15 13, 15	13, 14 13, 14 13, 14	15 15 15
1 1	23, 24 23, 24 23, 24	20, 22 20, 22 20, 22	19, 24 19, 24 19, 24	18, 20 18, 20 18, 20
1 1	13	12 9, 12 12	10, 12 10, 12 10, 12	10, 11
Ξ.	12, 13 12 12	11, 13	∞ ∞ ∞	8, 10
9 .	% 8 8 8 8	7, 9	6,9	6 6 6
16, 17	17, 19 17, 19 17, 19	16, 18 16, 18 16, 18	14, 16 14, 16 14, 16	16, 17 16, 17 16, 17
1 1	12 10, 12 12	10, 11	10, 11	12, 13 12, 13
1 1	8, 13 8, 13 8,13	8, 11 8, 11 8, 11	11, 12	10, 12 10, 12 10, 12
	28, 30 28, 30 28, 30	28, 30 28, 30 28, 30	28, 33.2 28, 33.2 28, 33.2	30, 30.2 30, 30.2 30, 30.2
15 15	13,14 14 14	10 10, 15 10	13,16 13, 16 13, 16	12, 13 12, 13 12, 13
Replication 15 # 2 Consensus 15 Profile	DFL 10 Replication 13,14 # 1 Replication 14 # 2 Consensus 14 Profile	DFL 11 Replication 10 # 1 Replication 10, 15 # 2 Consensus 10 Profile	DFL 12 Replication 13,16 # 1 Replication 13, 16 # 2 Consensus 13, 16 Profile	DFL 13 Replication 12, 13 # 1 Replication 12, 13 # 2 Consensus 12, 13 Profile

(Continued)

 Table 1.
 (Continued).

Sample Loci ID Repl	Loci Replicates	D8S1179	D8S1179 D21S11	D7820	CSF1PO) D3S1358	THO1	D13S317	, D16S539	THO1 D13S317 D16S539 D2S1338 D19S433	D19S433	vWA	TPOX	TPOX D18S51 AMEL D5S818 FGA	AMEL	D5S818	FGA
DFL 14 I	DFL 14 Replication	1	ı	11	ı	18	1	11	12	ı	13	17, 18	8, 9,	15	Х, Ү	12	
, 🖪 #	Replication 10, 16	10, 16	1	8,9,11	10		1	11	8, 11	ı	13,16	17	6	16	Х, Ү	1	
· ·	Consensus Profile	1	1	11	1	1	1	11	1	1	13	17	6,8	1	X,Y	ı	ı
DFL 15 I	DFL 15 Replication 17	17	28	11	1	1	9	Í	6	í	14	ı	∞	I	Х, Ү	I	21
, = 4	Replication 13	13	1	11.2	ı	16	9	13	1	ı	12, 13	1	1	1	X,Y	ı	21
. • 14	Consensus	1	1	ı	1	1	9	1	ı	1	ı	1		1	X,Y	ı	21
DFL 16 I	DFL 16 Replication # 1	ı	ı	ı	ı	16	İ	111	ı	ı	ı	1	1	1	ı		20
. . #	Replication # 2	1	1	1	12	ı	ı	1	1	1	1	ı	1	ı	1	1	21
I	Consensus Profile	1	1	1	1	1	1		1		ı	1	1	1	1	1	
DFL 17 I	DFL 17 Replication 13	13	28, 33.2	11	11	15, 16	9.3	11	9, 11	17, 20	13, 16	19	í	15, 16	Х, Ү	11, 12	21
. #	Replication 10, 11, # 2	10, 11,	28, 29	∞	9.2, 11	17	9.3	11	1	1	13, 16	17, 19	i	16	X,Y	12	21
) II	Consensus Profile	13	28	ı	11	1	9.3	111	ı	1	13, 16	19	r	16	X,Y	12	21
DFL 18 I	DFL 18 Replication 13	13	ı	1	ı	16	ı	1	1	20	111	1	1	1	Y		,
— #	Replication # 2	ı	28	11	1	1	7		1	20	11	17		1	¥	12	ı

						23						
1	1 1	1	23	1 1	2 21	2 21,	2 21	24	24	24	20	1
ı	. 5	1 1	ı	1 1	11, 12	11, 12	11, 12	Ī	10	1	Ī	1
>	1 1	1	×	1 1	Х, Ү	Х, Ү	Х, Ү	×	×	×	1	7
ī	20	I	14, 18	1 1	14, 16	14, 15	14	1	1	ī	1	ı
1	1 1	1	11	1 1	∞	8, 9	∞	10	10	10	ı	,
ı	1 1	ı	17	1 1	14, 15	14, 15	14, 15	14, 15	15	15	1	14, 18
11	1 1	ı			13, 14.2	13, 14.2	13, 14.2	13, 14	ı		ı	1
				1 1	_,	22	22	19	10	1		1
		ı	ı	1 1	11	ı	ı	6	6	6	ı	,
						12			8, 12	_,		
ı	, =	,	1 7		8 12	3 11,	3 12	12	%	12	12	ı
1	1 1	1	ı	1 1	7, 8	7, 8	7, 8	6	∞	1	9	1
ī	16	1	ī		15	15	15	15, 17	ı	ı	1	ı
1	1 1	ı	12	1 1	11	11	11	11, 12	11	11	1	ı
1	- 0) '	10	Ξ .	12	12	12	8, 11	1	ı	∞	ı
		ı	1	1 1	28, 32.2	28, 32.2	28, 32.2	29, 30	1	1	30	
					, 14	, 14	11, 14					
Consensus - Profile	DFL 19 Replication - # 1 Renlication -	# 2 Consensus - Profile		Replication 12 # 2 Consensus - Profile	DFL 21 Replication 11, 14	# 1 Replication 11, 14 # 2	sensus	DFL 22 Replication 13, 14	Replication 14	Consensus 14 Profile	DFL 23 Replication 15	Replication 14

Table 1. (Continued).	ed).															
Sample Loci ID Replicates	D8S117	D8S1179 D21S11	D7820	CSF1PO) D3S1358	TH01	D13S31	7 D16S539) D2S1338	THO1 D13S317 D16S539 D2S1338 D19S433	vWA	TPO	TPOX D18S51 AMEL D5S818 FGA	1 AMEI	. D5S818	FGA
Consensus Profile	1	ı	1	1	1	1	1	1	1	ı	1		ı	1	1	1
DFL 24 Replication 10	10	29, 31	∞	13	15, 16, 17	Į	∞	1	ı	13, 15.2	16, 19,	1	ı	×	11, 13	22
lication	10	29,31	∞	13	16, 17	I	∞	1	ı	13, 15.2	20 16, 20	1	ı	×	11, 13	22
sensus	10	29,31	∞	13	16, 17	ı	∞	ı	ı	13, 15.2	16, 20	1	ı	×	11, 13	22
DFL 25 Replication • # 1	ı	ı	ı	1	ı	ı	12	1	ı	ı	ı	1	ı	×		21
lication	ı	1	1	ı		ı	12	1	ı	ı	ı	1	ı	×		21, 22
sensus	ı	ı	ı	ı	ı	ı	12	ı	ı	1	I	1	ı	×		21
DFL 26 Replication •	ı	ı	ı	1	ı	ı	11	1	ı	ı	ı		ı	1	1	1
plication	ı	1	ı	1	1	ı	1	1	ı	1	ı	ı	ı	ı	1	ı
sensus ile	ı	ı	ı	ı	r	ı	ı	ı	1	ı	ı	1	ī	1	1	ı
DFL 27 Replication 11	11	29	12	10	16	9	∞	10	19	15	14, 17	6	12	×	13	21
Replication 11	11	29	12	10, 13	16	9	∞	10	19	15	17	6	12	×	13	21
sensus ile	111	29	12	10	16	9	∞	10	19	15	17	6	12	×	13	21

Table 2. Consensus profiles produced with AmpFISTR MiniFiler STR kit.

Sample	Replications	D13S317	D7S820	AML	D2S1338	D21S11	D16S539	D18S51	CSF1PO	FGA
DFL 1	Replication # 1 Replication # 2 Consensus Profile	8, 9 8, 9 8,9	∞ ∞ ∞	×××	81 88 81 81	29, 32.2 29, 32.2 29, 32.2	12, 13 12, 13 12, 13	13, 21 13, 21 13, 21	10, 12 10, 12 10, 12	20, 24 20, 24 20, 24
DFL 2	Replication # 1 Replication # 2 Consensus Profile	11,12 11, 12 11, 12	11 9, 11 11	X, Y X, Y X, Y	19, 20 20 20	26.2, 30, 33.2 26.2 26.2	9, 11 9, 11, 12 9, 11	16 15, 16 16	12 10, 12 12	21, 24 21 21
DFL 3	Replication # 1 Replication # 2 Consensus Profile	11 11, 12 11	11 11, 12 11	X, Y X, Y X, Y	19, 20 19, 20 19, 20	33.2 33.2 33.2	11, 12 8, 11, 12 11, 12	15, 16 15, 16 15, 16	10, 12 10, 11, 12 10, 12	21, 24 21 21
DFL 4	Replication # 1 Replication # 2 Consensus Profile	===	10, 11 10, 11 10, 11	\times \times \times	16 24 -	30 30 30	11 11, 12 11	14, 15 14, 15 14, 15	10, 11 10 10	18.2, 23 18.2, 23 18.2, 23
DFL 5	Replication # 1 Replication # 2 Consensus Profile	8, 12 8, 12 8, 12	11, 12 12 12	X, Y X, Y X, Y	20, 24 20, 24 20, 24	26, 30 26, 30 26, 30	11, 13 9, 11, 13 11, 13	13, 15, 17 14, 15, 17 15, 17	10, 11, 12 10, 11 10, 11	21, 22, 24 22, 24 22, 24
DFL 6	Replication # 1 Replication # 2 Consensus Profile	8, 12 8, 12 8, 12	===	\times \times \times	20, 23 20, 23 20, 23	30.2, 31.2 30.2, 31.2 30.2, 31.2	11, 12 11, 12 11, 12	13, 17 13, 17 13, 17	10, 13 10, 13 10, 13	19, 21 19, 21 19, 21
DFL 7	Replication # 1 Replication # 2 Consensus Profile	∞ ∞ ∞	8, 11 8, 11 8, 11	X, Y X, Y Y, Y	23, 25 23, 25 23, 25	30, 32.2 30, 32.2 30, 32.2	= = =	17, 19 17, 19 17, 19	12 12	21, 22 21, 22 21, 22
DFL 8	Replication # 1 Replication # 2 Consensus Profile	8, 11 8, 11 8, 11	10 10 10	X, Y X, Y X, Y	18, 22 18, 22 18, 22	30, 31.2 30, 31.2 30, 31.2	8, 11 8, 11 8, 11	17, 19 17, 19 17, 19	11, 12 11, 12 11, 12	20, 24 20, 24 20, 24
										(Counting)

Table 2. (Continued).

Sample	Replications	D13S317	D7S820	AML	D2S1338	D21S11	D16S539	D18S51	CSF1PO	FGA
DFL 9	Replication # 1 Replication # 2 Consensus Profile	11, 12,13 13 13	1 1 1	×××	20 25 -	30 31.2	11, 12, 13 11 11	15 15 15	10, 11, 12 10, 11 10, 11	21
DFL 10	Replication # 1 Replication # 2 Consensus Profile	8, 12, 13 12, 13 12, 13	8, 13 8, 13 8, 13	X, Y X, Y X, Y	23, 24 23, 24 23, 24	28, 30 28, 30 28, 30	13 12, 13 13	13, 14 13, 14 13, 14	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20, 25 20, 25 20, 25
DFL 11	Replication # 1 Replication # 2 Consensus Profile	11, 13 11, 13 11, 13	8, 11 8, 11 8, 11	X, Y X, Y X, Y	20, 22 20, 22 20, 22	28, 30 28, 30 28, 30	12 9, 12 12	14, 17 14, 17 14, 17	10, 11 10, 11 10, 11	26 26 26
DFL 12	Replication # 1 Replication # 2 Consensus Profile	∞ ∞ ∞	11, 12 11, 12 11, 12	X, Y X, Y X, Y	19, 24 19, 24 19, 24	28, 33.2 28, 33.2 28, 33.2	10, 12 10, 12 10, 12	13, 15 13, 15 13, 15	10, 11 10, 11 10, 11	19, 23 19, 23 19, 23
DFL 13	Replication # 1 Replication # 2 Consensus Profile	8, 10 8, 10 8, 10	10, 12 10, 12 10, 12	\times \times \times	18, 20 18, 20 18, 20	30, 30.2 30, 30.2 30, 30.2	10, 11 10, 11 10, 11	14, 15 14, 15 14, 15	12, 13 12, 13 12, 13	19, 24 19, 24 19, 24
DFL 14	Replication # 1 Replication # 2 Consensus Profile	11, 12	11, 12	X, Y X, Y X, Y	26 20 -	33.2	. 6 .	15	11, 12 10, 12 12	21, 22
DFL 15	Replication # 1 Replication # 2 Consensus Profile	12		X, X, X, X, Y,	18, 25 20, 23	33.2 28 -	8, 11 9, 10	16, 17 16, 17 16, 17	10 10 10	24 24 44
DFL 16	Replication # 1 Replication # 2 Consensus Profile	1 1 1	1 1 1	1 1 1	1 1 1	28	1 1 1	19	- 12	24

21 21 21	12.	20	1 1 1	21, 22 21, 22 21, 22	23 22, 23 23	25 20, 21	22, 26 22 22	(Continued)
===	10 11, 12	17	1 1 1	10, 11 10, 11 10, 11	11, 12 11 11	12	12, 13 12, 13 12, 13	
16, 19 16 16	15 16	19	8	12, 14 12, 14 12, 14	14, 16 16 16	1 1 1	12, 14 12, 14, 19 12, 14	
6 11 -	1 1 1	10, 11	6 8, 10, 12 -	9, 12 9, 12 9, 12	===	161	10, 12 10, 12 10, 12	
28 28, 30 28	32.2, 34 - -	31	29	28, 32.2 28, 32.2 28, 32.2	33.2	29	29, 31 29, 31 29, 31	
29	20 20 20		20 20 20	22 22 23	17, 20	1 1 1	20, 25 24, 25 25	
X, X, X, X, Y,	Y	×	X X X X X X Y X Y X Y X Y X Y X Y X Y X	X, X, X, X, Y,	\times \times \times	1 1 1	×××	
11 8, 10	9, 10	. = .	11 10	11, 12 11, 12 11, 12	8 10	. = .	6 8 8 8	
11, 12 11 11	1 1 1		1 1 1	12 11, 12 12	12 8, 12 12	17	8, 11 8, 11 8, 11	
Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	Replication # 1 Replication # 2 Consensus Profile	
DFL 17	DFL 18	DFL 19	DFL 20	DFL 21	DFL 22	DFL 23	DFL 24	

Table 2. (Continued).

Sample	Sample Replications	D13S317 D7S820	D7S820	AML	D2S1338	D21S11	D16S539	D18S51	CSF1PO	FGA
DFL 25	Replication # 1 Replication # 2 Consensus Profile	9, 12 9, 12 9, 12		×××		28				21, 24 21, 24 21, 24
DFL 26	Replication # 1 Replication # 2 Consensus Profile	= = =		XX						21 21, 23 21
DFL 27	Replication # 1 Replication # 2 Consensus Profile	8, 9 8, 9 8, 9	12 12 12	XXX	19, 25 19 19	29 29 29	10 10 10	12, 15 12, 15 12, 15	10 10 10	21 21, 22 21

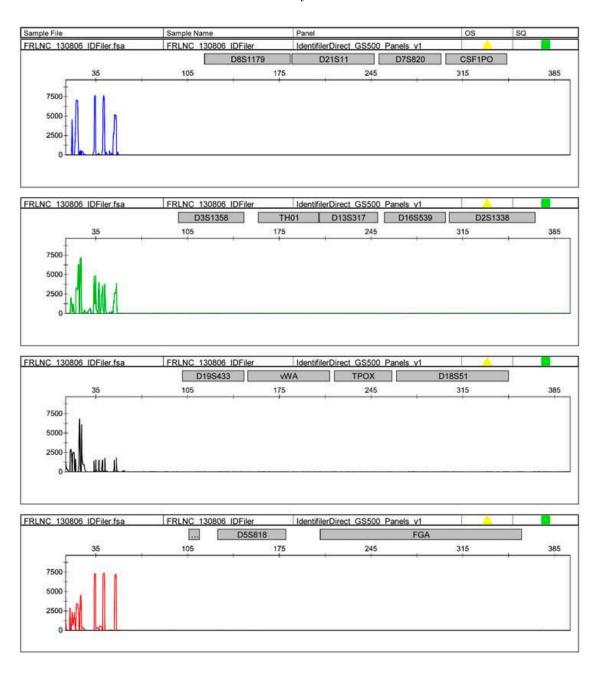


Figure 1. Negative control with AmpFlSTR Identifiler STR kit.

27 highly degraded old bone samples were evaluated with modified protocols of Identifiler and MiniFiler STR kits. Nine STR loci are common in both AmpFlSTR IdentiFiler and AmpFlSTR MiniFiler STR kits; therefore, concordance and non-concordance was determined on the basis of these common STR loci. Full concordance between AmpFlSTR MiniFiler and AmpFlSTR IdentiFiler successfully genotyped STR loci was perceived in 97.33% (146/150) of the compared STR loci, while discordant STR loci were 2.67% (4/150) of the total STR loci, due to either or both of allele drop-out or drop-in (Table 3). Similar kinds of findings (99.7% and 99.88% full concordance), have been reported by Hill *et al.*¹⁷ and Alenizi *et al.*¹⁸, respectively, for typing fresh blood samples using AmpFlSTR MiniFiler and AmpFlSTR IdentiFiler STR kits, while in the current study old skeletal remains have been used. Oh *et al.*⁸ have investigated eight human femurs (200–400 years old) for comparative analysis of STRs and mini-STRs

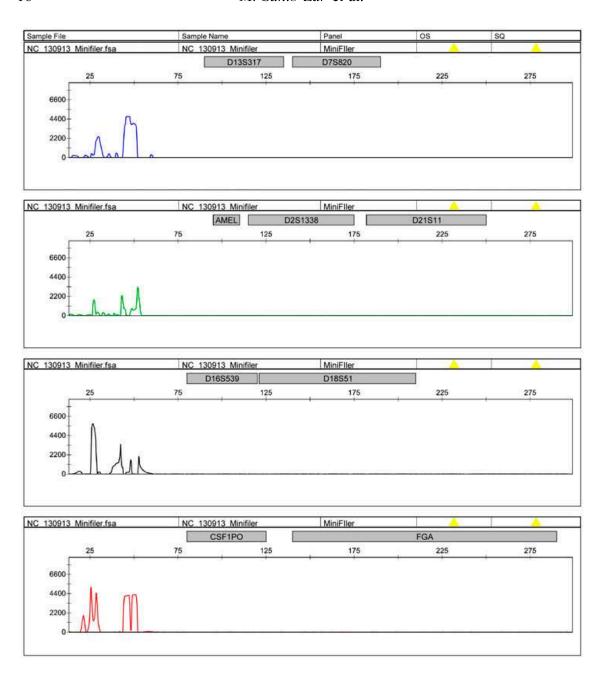


Figure 2. Negative control with AmpFlSTR MiniFiler STR kit.

loci, while in the current study 27 different kinds of old skeletal remains have been used. Considering these points, it is recommended that forensic DNA experts strongly consider modified protocols of IdentiFiler and MiniFiler STR kits for typing degraded and old skeletal remains.

Comparison of DNA profiles obtained with AmpFlSTR IdentiFiler and AmpFlSTR MiniFiler kits from highly degraded old bones

A strategy of comparing DNA profiles obtained with AmpFlSTR MiniFiler and Amp-FlSTR Identifiler PCR amplification kits for typing highly-degraded DNA revealed more genetic information with the MiniFiler kit compared with the Identifiler kit. In total, 27 DNA samples, 14 full DNA profiles, 10 partial and three no profiles were

Downloaded by [University of the Punjab] at 10:43 29 June 2014

20, 24 20, 24 20, 24 20, 24 21, 22 21, 22 21 21 FGA 23 18.2, 23 22, 19, 19, 21 21 CSF1PO 12, 10, 13 11, 12 10, 13 12 10, 10, 10, 5,0 12 10 12 D18S51 16 15, 16 -14, 15 17, 19 17, 19 13, 17 13, 17 19 21 21 15, 13, 16 16 15 Concordance and non-concordance of STR loci using AmpFISTR Identifiler and AmpFISTR Minifiler STR kits. D16S539 11, 12 8, 11 12, 30, 32.2 30, 32.2 32.2 32.2 31.2 D21S11 26, 30 26, 30 30.2, 31.2 30.2, 31.2 28 26.2 33.2 33.2 29, 29, 30, 30 D2S1338 20 20 24 24 20, 23 23 25 25 22 22 19, 19, 18 8, 8, 18 20 20 AMEL X X Y \succ \succ $\succ \succ$ ΧX × × ×× D7S820 1 11 10, 10 \square = =12 11 11 $\infty \infty$ Loci D13S317 12 12 12 11 8, 9 8,9 13 =11 ∞ ∞ ∞, ∞, ∞ ∞ $\infty \infty$ IdentiFiler MiniFiler IdentiFiler Name of Kits IdentiFiler MiniFiler MiniFiler Table 3. Sample ID DFL 1 5 6 DFL, DFL DFL DFL DFL DFL DFL DFL

(Continued)

Table 3. (Continued).

	`									
Sample ID	Name of Kits	Loci D13S317	D7S820	AMEL	D2S1338	D21S11	D16S539	D18S51	CSF1PO	FGA
DFL 10	IdentiFiler MiniFiler	12, 13 12, 13	8, 13 8, 13	X, Y X, Y	23, 24 23, 24	28, 30 28, 30	13 13	13, 14 13, 14	12	20, 25 20, 25
DFL 11	IdentiFiler MiniFiler	11, 13	8, 11 8, 11	X, Y Y, Y	20, 22 20, 22	28, 30 28, 30	12	14, 17 14, 17	10, 11 10, 11	23, 26 26
DFL 12	IdentiFiler MiniFiler	∞ ∞	12 11, 12	X, X Y, Y	19, 24 19, 24	28, 33.2 28, 33.2	10, 12 10, 12	13, 15 13, 15	10, 11 10, 11	19, 23 19, 23
DFL 13	IdentiFiler MiniFiler	8, 10 8, 10	10, 12 10, 12	××	18, 20 18, 20	30, 30.2 30, 30.2	10, 11 10, 11	14, 15 14, 15	12, 13 12, 13	19, 24 19, 24
DFL 14	IdentiFiler MiniFiler	==	II II	X, Y Y, Y	1 1	1 1	1 1	1 1	- 12	1 1
DFL 15	IdentiFiler MiniFiler	1 1	1 1	X,Y X, Y	1 1	1 1	1 1	- 16, 17	10	21 24
DFL 16	IdentiFiler MiniFiler	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
DFL 17	IdentiFiler MiniFiler	==	1 1	X, Y X, Y	1 1	28 28	1 1	16 16	= =	21
DFL 18	IdentiFiler MiniFiler	1 1	1 1	* *	20 20	1 1	I I	1 1	1 1	1 1
DFL 19	IdentiFiler MiniFiler	1 1	1 1	1 1			1 1	1 1		1 1

ĭ	ldentiFiler MiniFiler	1 1	1 1	X, Y	20	1 1	1 1	1 1	1 1	1 1
IdentiFiler MiniFiler		12	12 11, 12	X, Y X, Y	22 22	28, 32.2 28, 32.2	9, 12	14 12, 14	11 10, 11	21 21, 22
IdentiFiler MiniFiler		12	1 1	××	1 1	1 1	9	- 16	11 11	24 23
IdentiFiler MiniFiler		1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
IdentiFiler MiniFiler		8 8, 11	∞ ∞	××	25	29, 31 29, 31	10, 12	- 12, 14	13 12, 13	22 22
IdentiFiler MiniFile		12 9, 12		××						21 21, 24
IdentiFiler MiniFile		. =	1	XX	1	1	ı	1	1	21
IdentiFiler MiniFile		8, 9	12	××	19 19	29 29	10	12 12, 15	10	21 21

Table 4. DNA quantity and number of STR loci successfully genotyped with the AmpFISTR Identifiler and AmpFISTR MiniFiler STR Kits from old skeletal remains.

Sample ID	Type of sample	DNA quantity (pg/µL)	Identifiler STR loci	Minifiler STR loci	Sample ID	Type of sample	DNA quantity (pg/µL)	Identifiler STR loci	Minifiler STR loci
DFL (1)	Humerus	113	16/16	6/6)	Radius	Not detected	3/16	4/9
DFL (2) DFL (3)	Tibia U∏na	5.0	13/16 15/16	6/6	DFL (16) DFL (17)	Femur Tibia	Not detected	0/16 11/16	6/9
DFL (4)	Metacarpal	Not detected	6/16	6/8	DFL (18)	Radius	2.0	3/16	2/9
DFL(5)	Tibia	70.0	16/16	6/6		Femur	Not detected	0/16	6/0
DFL (6)	Ulna	106.0	16/16	6/6		Humerus	Not detected	0/16	2/9
DFL (7)	Ulna	24.0	16/16	6/6		Metacarpal	23.0	13/16	6/6
DFL (8)	Radius	40.0	16/16	6/6		Fibula	Not detected	8/16	6/9
DFL (9)	Radius	3.0	5/16	6/5		Radius	Not detected	0/16	6/0
DFL (10)	Skull	122.0	16/16	6/6		Metacarpal	7.0	11/16	6/6
DFL (11)	Tibia	145.0	16/16	6/6		Humerus	Not detected	3/16	3/9
DFL (12)	Femur	165.0	16/16	6/6		Skull	Not detected	0/16	3/9
DFL (13)	Ulna	110.0	16/16	6/6		Fibula	75.0	16/16	6/6
DFL (14)	Ulna	4.0	6/16	6/4					

Identifiler Kit: Full DNA profile (16/16 STR loci); partial DNA profile (<16/16 STR loci); no profile (0/16 STR Loci). Minifiler Kit: Full DNA profile (9/9 STR loci); partial DNA profile (<9/9 STR Loci), no profile (0/9 STR loci).

produced with the MiniFiler kit, while in the case of the Identifiler kit, 10 full DNA profiles, 12 partial profiles and five no profiles were produced, as shown in Figure 5. Full, partial and no profiles were made on the basis of the number of STR loci successfully genotyped with the AmpFlSTR Identifiler and AmpFlSTR MiniFiler STR kits from old skeletal remains as shown in Table 4. Comparison of STR loci highlights the ability of the MiniFiler STR kit to recover more informative DNA profiles than the

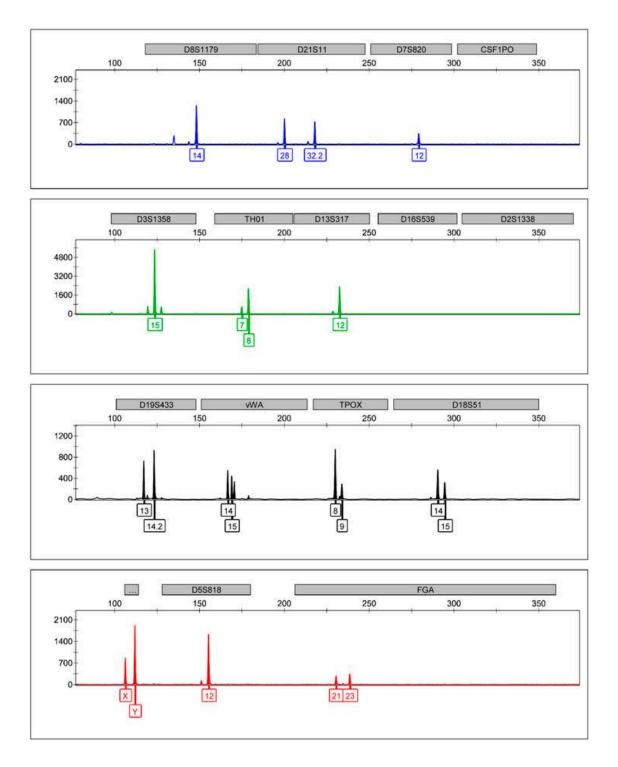


Figure 3. Partial DNA profile obtained with AmpFISTR Identifiler STR kit from bone sample (DFL 21).

Identifiler kit from the same bone samples, as shown by one example in Figures 3 and 4. It might be because the primers of the MiniFiler STR loci yield smaller amplicons compared with the conventional Identifiler STR loci, which recover STR loci/alleles that failed to type with the Identifiler STR kit⁸. Similar kinds of finding have been reported by Coble and Butler¹⁹).

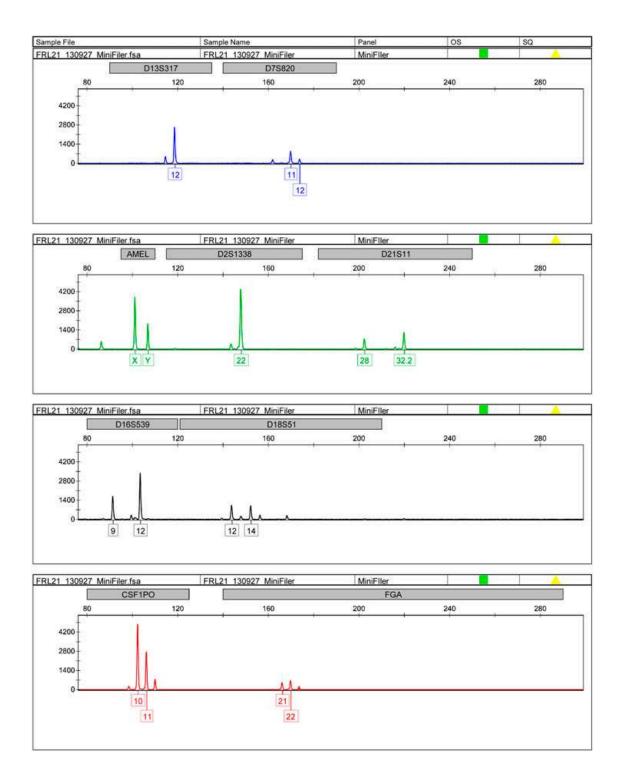


Figure 4. Full DNA profile obtained with AmpFISTR MiniFiler STR kit from bone sample (DFL 21).

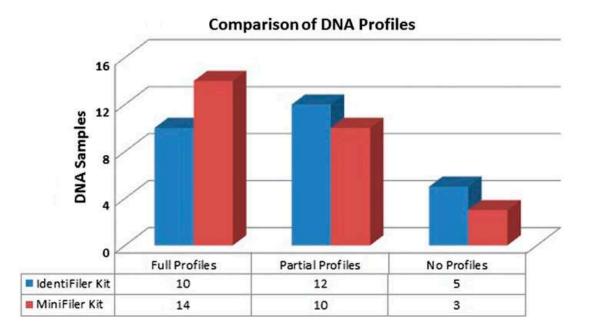


Figure 5. Comparison of DNA profiles obtained with AmpFlSTR Identifiler and AmpFlSTR Minifiler STR kits.

Conclusions

The present study showed the importance of both AmpFlSTR Identifiler and AmpFlSTR MiniFiler STR Kits for typing of old skeletal remains obtained from 100–1000-year-old mass graves in Pakistan. Promising DNA profiles were obtained from old skeletal remains using both AmpFlSTR Identifiler and AmpFlSTR MiniFiler STR kits with optimised PCR amplification conditions and extended PCR cycles. DNA profiles were obtained from a minute quantity of DNA (even from ≤10 pg/µL) with modified protocols of these kits, which is a significant achievement. Discordant STR loci were perceived in DNA profiles of a few samples due to either or both allele dropin or drop-out, while most of the STR loci were concordant. Finally it was proved that the AmpFlSTR MiniFiler kit promoted the recovery of locus/alleles that failed to type with the AmpFlSTR Identifiler kit and more informative DNA profiles were obtained from old skeletal remains with the AmpFlSTR MiniFiler STR kit compared with the AmpFlSTR Identifiler STR kit.

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) of Pakistan, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan, International Research Support Initiative Program (IRSIP), HEC, and Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, South Korea for their financial and moral support. The authors would also like to acknowledge Professor Dr Shahid Jamil Sameeni, Institute of Geology, University of the Punjab, Lahore for helping us in estimating the age of these old skeletal remains using archaeological and geological approaches.

References

1. Butler JM. Forensic DNA typing: biology, technology and genetics of STR markers. 2nd ed. New York: Elsevier. 2005.

- 2. Butler JM. Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006;51(2):253–265.
- 3. Opel KL, Chung DT, Drábek J, Tatarek NE, Jantz LM, McCord BR. The application of miniplex primer sets in the analysis of degraded DNA from human skeletal remains. J Forens Sci. 2006;51(2):351–356.
- 4. Butler JM, Shen Y, McCord BR. The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci. 2003;48(5):1–11.
- 5. Collins PJ, Hennessy LK, Leibelt CS, Roby RK, Reeder DJ, Foxall PA. Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFISTR Identifiler PCR amplification kit. J Forensic Sci. 2004;49 (6):1265–1277.
- 6. Opel KL, Chung DT, Drabek J, Butler JM, McCord BR. Developmental validation of reduced-size STR miniplex primer sets. J Forensic Sci. 2007;52(6):1263–1271.
- 7. Hill CR, Kline MC, Coble MD, Butler JM. Characterization of 26 miniSTR loci for improved analysis of degraded DNA samples. J Forensic Sci. 2008;53(1):1–8.
- 8. Oh CS, Lee SJ, Park JB, Lee SD, Seo SB, Kim HY, Kim J, Kim YS, Shin DH. Autosomal short tandem repeat analysis of ancient DNA by coupled use of mini- and conventional STR Kits. J Forensic Sci. 2012;57(3):820–825.
- 9. Applied Biosystems. AmpFlSTR® MiniFiler™ PCR Amplification Kit User's manual. Foster City, CA: Applied Biosystems 2007.
- Zar MS, Shahid AA, Shahzad MS, Shin KJ, Lee HY, Israr M, Kim EH, Rahman ZU, Husnain T. Forensic DNA Typing of Old Skeletal Remains Using AmpFlSTR®Identifiler® PCR Amplification Kit. J Forensic Res. 2013;5:211–216.
- 11. Applied Biosystems. Quantifiler® Duo DNA quantification kits User's Manual, PN 4391294 Rev. B. 2008.
- 12. Huel R, Amory S, Bilic A, Vidovic S, Jasaragic E, Parsons TJ. DNA extraction from aged skeletal samples for STR typing by capillary electrophoresis. DNA electrophoresis protocols for forensic genetics. Methods in Mol Biol. 2012;830:185–198.
- 13. Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J. An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int. 2000; 112:17–40.
- 14. Caragine T, Mikulasovich R, Tamariz J, Bajda E, Sebestyen J, Baum H, Prinz M. Validation of testing and interpretation protocols for low template DNA samples using ampFlSTR® identifiler. Croat Med J. 2009;50:250–267.
- 15. Butler JM. Short tandem repeat typing technologies used in human identity testing. BioTechniques. 2007;43(4): Sii–Sv.
- 16. Balding DJ, Buckleton J. Interpreting low template DNA profiles. Forensic Sci Int Genet. 2009;4:1–10.
- 17. Hill CR, Kline MC, Mulero JJ, Lagac RE, Chang CW, Hennessy LK, Butler JM. Concordance study between the AmpFlSTR MiniFilerTM PCR Amplification Kit and conventional STR typing kits. J Forensic Sci. 2007;52(4):870–873.
- 18. Alenizi MA, Goodwin W, Hadi S, Alenizi HH, Altamar KA, Alsikel MS. Concordance between the AmpFlSTR MiniFiler and AmpFlSTR Identifiler PCR amplification kits in the Kuwaiti population. J Forensic Sci. 2009;54:350–352.
- 19. Coble MD, Butler JM. Characterization of new miniSTR loci to aid analysis of degraded DNA. J. Forensic Sci. 2005;50(1):43–53.